Virial Theorem Calculator 

Virial Theorem Calculator computes kinetic and potential energies for a particle in a potential, verifying the virial theorem.

Formulas Used in Virial Theorem Calculator

The calculator applies the virial theorem for a single particle:

Virial Theorem:

\[ \langle T \rangle = -\frac{1}{2} \sum_i \langle \mathbf{r}_i \cdot \mathbf{F}_i \rangle \]

Harmonic Potential:

\[ V = \frac{1}{2} k r^2, \quad \mathbf{F} = -k \mathbf{r}, \quad \langle T \rangle = \langle V \rangle = \frac{3}{2} k_B T \]

Gravitational Potential:

\[ V = -\frac{G M m}{r}, \quad \mathbf{F} = -\frac{G M m}{r^2} \hat{r}, \quad \langle T \rangle = -\frac{1}{2} \langle V \rangle \]

Where:

  • \(\langle T \rangle\): Average kinetic energy (J)
  • \(\langle V \rangle\): Average potential energy (J)
  • \(k_B\): Boltzmann constant (\(1.380649 \times 10^{-23} \, \text{J/K}\))
  • \(T\): Temperature (K)
  • \(k\): Spring constant (N/m)
  • \(G\): Gravitational constant (\(6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2}\))
  • \(M\): Central mass (kg)
  • \(m\): Particle mass (kg)
  • \(r\): Distance (m)

Example Calculation

Example: Harmonic Potential, \(k = 1 \, \text{N/m}, T = 300 \, \text{K}\)

\[ \langle T \rangle = \frac{3}{2} k_B T = \frac{3}{2} \times 1.380649 \times 10^{-23} \times 300 \approx 6.212921 \times 10^{-21} \, \text{J} \] \[ \langle V \rangle = \langle T \rangle \approx 6.212921 \times 10^{-21} \, \text{J} \]

Result: \(\langle T \rangle \approx 6.212921 \times 10^{-21} \, \text{J}, \langle V \rangle \approx 6.212921 \times 10^{-21} \, \text{J}\).

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators
error: Content is protected !!