google.com, pub-8308647970737773, DIRECT, f08c47fec0942fa0

Vortex Dynamics Simulator

Vortex Dynamics Simulator models 2D fluid vortices past a barrier, visualizing motion and circulation.

Formulas Used in Vortex Dynamics Simulator

The simulator models the motion of 2D point vortices past a barrier:

Vortex Motion (Inviscid):

\\[ \frac{dx_i}{dt} = u_i = \frac{1}{2\pi} \sum_{j \neq i} \Gamma_j \frac{y_i – y_j}{(x_i – x_j)^2 + (y_i – y_j)^2} \\] \\[ \frac{dy_i}{dt} = v_i = -\frac{1}{2\pi} \sum_{j \neq i} \Gamma_j \frac{x_i – x_j}{(x_i – x_j)^2 + (y_i – y_j)^2} \\]

Circulation Evolution (Viscous):

\\[ \Gamma_i(t) = \Gamma_i(0) e^{-\nu t / L^2} \\]

Where:

  • \\(x_i, y_i\\): Position of vortex \\(i\\) (m)
  • \\(u_i, v_i\\): Velocity of vortex \\(i\\) (m/s)
  • \\(\Gamma_i\\): Circulation of vortex \\(i\\) (m²/s)
  • \\(\nu\\): Kinematic viscosity (m²/s)
  • \\(L\\): Barrier length (m)
  • \\(t\\): Time (s)

Example Calculation

Example: \\(u_0 = 1 \, \text{m/s}, \nu = 0.01 \, \text{m}^2/\text{s}, L = 0.1 \, \text{m}, N = 5\\)

Vortices initialized behind barrier with \\(\Gamma_i \approx 0.05 \, \text{m}^2/\text{s}\\). Motion computed via point vortex equations, with viscous decay.

Related Calculators

  1. Tidal Force Calculator
  2. Orbital Velocity Calculator
  3. Escape Velocity Calculator
  4. Kinematic Equation Solver
  5. Physics Calculators