WKB Approximation Solver Online Free
WKB Approximation Solver computes energy levels for a quantum particle in a harmonic oscillator, aiding quantum mechanics and molecular physics studies.
Formulas Used in WKB Approximation Solver
The calculator uses the WKB approximation for a harmonic oscillator potential:
WKB Quantization Condition:
\\[ \int_{x_1}^{x_2} \sqrt{2 m [E_n – V(x)]} \, dx = \left( n + \frac{1}{2} \right) \pi \hbar \\]Harmonic Oscillator Potential:
\\[ V(x) = \frac{1}{2} m \omega^2 x^2 \\]Energy Levels (Harmonic Oscillator):
\\[ E_n = \left( n + \frac{1}{2} \right) \hbar \omega \\]Classical Turning Points:
\\[ x_{1,2} = \pm \sqrt{\frac{2 E_n}{m \omega^2}} \\]Where:
- \\( E_n \\): Energy of the \\( n \\)-th level (eV)
- \\( n \\): Quantum number (0, 1, 2, …)
- \\( m \\): Particle mass (kg)
- \\( \omega \\): Angular frequency (rad/s)
- \\( \hbar \\): Reduced Planck’s constant (\\( 1.0545718 \times 10^{-34} \, \text{J·s} \\))
- \\( x_1, x_2 \\): Classical turning points (nm)
Example Calculations
Example 1: Electron, Low Quantum Number
Input: Quantum Number = 1, Particle Mass = 9.109e-31 kg, Angular Frequency = 1e14 rad/s
Result: Energy: 0.099 eV, Turning Points: ±1.863 nm
Example 2: Electron, Higher Quantum Number
Input: Quantum Number = 3, Particle Mass = 9.109e-31 kg, Angular Frequency = 1e14 rad/s
Result: Energy: 0.230 eV, Turning Points: ±2.842 nm
Example 3: Heavier Particle
Input: Quantum Number = 1, Particle Mass = 1.673e-27 kg, Angular Frequency = 1e13 rad/s
Result: Energy: 0.0099 eV, Turning Points: ±0.1375 nm