Kepler’s Third Law Calculator
Calculate the orbital period (\( T \)) or semi-major axis (\( a \)) of an orbit using Kepler’s Third Law with the mass of the central body (\( M \)) and gravitational constant (\( G \)).
Kepler’s Third Law Calculator
Calculation Result
About the Kepler’s Third Law Calculator
The Kepler’s Third Law Calculator computes the orbital period (\( T \)) or semi-major axis (\( a \)) of an object in an elliptical orbit around a central body, such as a planet orbiting the Sun or a satellite orbiting Earth. This tool is designed for physics students, astronomers, and space enthusiasts studying orbital mechanics.
Formula used (Kepler’s Third Law):
- \( T^2 = \frac{4 \pi^2}{G M} a^3 \)
- Orbital Period: \( T = \sqrt{\frac{4 \pi^2 a^3}{G M}} \)
- Semi-Major Axis: \( a = \left( \frac{G M T^2}{4 \pi^2} \right)^{1/3} \)
Where:
- \( T \): Orbital period (s)
- \( a \): Semi-major axis (average distance from the orbiting object to the central body, m)
- \( G \): Gravitational constant (m³ kg⁻¹ s⁻²)
- \( M \): Mass of the central body (kg)
- \( \pi \): Mathematical constant (~3.14159)
This calculator is ideal for studying planetary orbits, satellite trajectories, and astrophysical phenomena.
- Features:
- Calculates either orbital period (\( T \)) or semi-major axis (\( a \)).
- Supports unit conversions: mass (kg, g), semi-major axis (m, km, AU), period (s, days, years), gravitational constant (m³ kg⁻¹ s⁻²).
- Validates inputs: positive values for mass, semi-major axis, and period; numeric gravitational constant.
- Keypad includes digits, decimal point, scientific notation (E), and negative sign (-).
- Clear and backspace functionality, with a "Copy" button for results.
- Practical Applications: Useful in astronomy (e.g., calculating Earth’s orbital period around the Sun), space mission planning (e.g., satellite orbit design), and educational demonstrations of Kepler’s laws.
- How to Use:
- Select whether to calculate Orbital Period (\( T \)) or Semi-Major Axis (\( a \)).
- Enter the mass of the central body (\( M \)) and select the unit (kg, g).
- Enter the semi-major axis (\( a \)) (m, km, AU) or orbital period (\( T \)) (s, days, years), depending on the calculation type.
- Enter the gravitational constant (\( G \)) in m³ kg⁻¹ s⁻² (default: 6.6743E-11).
- Use the keypad to insert digits, decimal point, scientific notation (E), or negative sign (-).
- Click "Calculate" to compute the result, then use "Copy" to copy it.
- Use "Clear" to reset, or "⌫" to delete the last character.
- Share or embed the calculator using the action buttons.
- Helpful Tips:
- Ensure mass, semi-major axis, and period are positive.
- The gravitational constant can be positive (standard value) or negative (for theoretical scenarios).
- Use scientific notation (E) for large/small values (e.g., 1.496E11 for 1 AU).
- Final results are in SI units: period in seconds (s), semi-major axis in meters (m).
- For circular orbits, the semi-major axis equals the orbital radius.
- This calculator assumes the orbiting object’s mass is negligible compared to the central body.
- Examples:
- Example 1: Earth’s Orbital Period around the Sun:
- Calculate: Orbital Period (\( T \))
- Input: \( M = 1.989E30 \, \text{kg} \), \( a = 1 \, \text{AU} \), \( G = 6.6743E-11 \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)
- Steps:
- Convert: \( a = 1 \, \text{AU} = 1.496E11 \, \text{m} \)
- Formula: \( T = \sqrt{\frac{4 \pi^2 a^3}{G M}} \)
- Calculate: \( a^3 = (1.496E11)^3 \approx 3.347E33 \)
- Calculate: \( G M = 6.6743E-11 \cdot 1.989E30 \approx 1.3271E20 \)
- Calculate: \( \frac{4 \pi^2 a^3}{G M} = \frac{4 \cdot (3.14159)^2 \cdot 3.347E33}{1.3271E20} \approx 9.9518E12 \)
- Period: \( T = \sqrt{9.9518E12} \approx 3.1568E7 \, \text{s} \)
- Result: \( T \approx 3.1568E7 \, \text{s} \) (approximately 365.25 days or 1 year)
- Example 2: Semi-Major Axis of a Geostationary Satellite:
- Calculate: Semi-Major Axis (\( a \))
- Input: \( M = 5.972E24 \, \text{kg} \), \( T = 1 \, \text{day} \), \( G = 6.6743E-11 \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)
- Steps:
- Convert: \( T = 1 \, \text{day} = 86400 \, \text{s} \)
- Formula: \( a = \left( \frac{G M T^2}{4 \pi^2} \right)^{1/3} \)
- Calculate: \( T^2 = (86400)^2 \approx 7.4656E9 \)
- Calculate: \( G M = 6.6743E-11 \cdot 5.972E24 \approx 3.9857E14 \)
- Calculate: \( G M T^2 = 3.9857E14 \cdot 7.4656E9 \approx 2.9755E24 \)
- Calculate: \( \frac{G M T^2}{4 \pi^2} = \frac{2.9755E24}{4 \cdot (3.14159)^2} \approx 7.5424E22 \)
- Semi-Major Axis: \( a = (7.5424E22)^{1/3} \approx 4.2168E7 \, \text{m} \)
- Result: \( a \approx 4.2168E7 \, \text{m} \) (approximately 42,168 km)
- Example 3: Custom Orbit around a Planet:
- Calculate: Orbital Period (\( T \))
- Input: \( M = 1E23 \, \text{kg} \), \( a = 1E7 \, \text{m} \), \( G = 6.6743E-11 \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)
- Steps:
- Calculate: \( a^3 = (1E7)^3 = 1E21 \)
- Calculate: \( G M = 6.6743E-11 \cdot 1E23 \approx 6.6743E12 \)
- Calculate: \( \frac{4 \pi^2 a^3}{G M} = \frac{4 \cdot (3.14159)^2 \cdot 1E21}{6.6743E12} \approx 5.9088E8 \)
- Period: \( T = \sqrt{5.9088E8} \approx 2.4308E4 \, \text{s} \)
- Result: \( T \approx 2.4308E4 \, \text{s} \) (approximately 6.75 hours)
- Example 1: Earth’s Orbital Period around the Sun:
Calculate orbital periods or semi-major axes for planets and satellites with detailed steps using this calculator. Share or embed it on your site!