Kepler’s Third Law Calculator

Calculate the orbital period (\( T \)) or semi-major axis (\( a \)) of an orbit using Kepler’s Third Law with the mass of the central body (\( M \)) and gravitational constant (\( G \)).

Kepler’s Third Law Calculator

Please enter valid positive values for inputs and a numeric value for the gravitational constant.

Calculation Result

Result will appear here

Result copied to clipboard!

About the Kepler’s Third Law Calculator

The Kepler’s Third Law Calculator computes the orbital period (\( T \)) or semi-major axis (\( a \)) of an object in an elliptical orbit around a central body, such as a planet orbiting the Sun or a satellite orbiting Earth. This tool is designed for physics students, astronomers, and space enthusiasts studying orbital mechanics.

Formula used (Kepler’s Third Law):

  • \( T^2 = \frac{4 \pi^2}{G M} a^3 \)
  • Orbital Period: \( T = \sqrt{\frac{4 \pi^2 a^3}{G M}} \)
  • Semi-Major Axis: \( a = \left( \frac{G M T^2}{4 \pi^2} \right)^{1/3} \)

Where:

  • \( T \): Orbital period (s)
  • \( a \): Semi-major axis (average distance from the orbiting object to the central body, m)
  • \( G \): Gravitational constant (m³ kg⁻¹ s⁻²)
  • \( M \): Mass of the central body (kg)
  • \( \pi \): Mathematical constant (~3.14159)

This calculator is ideal for studying planetary orbits, satellite trajectories, and astrophysical phenomena.

  • Features:
    • Calculates either orbital period (\( T \)) or semi-major axis (\( a \)).
    • Supports unit conversions: mass (kg, g), semi-major axis (m, km, AU), period (s, days, years), gravitational constant (m³ kg⁻¹ s⁻²).
    • Validates inputs: positive values for mass, semi-major axis, and period; numeric gravitational constant.
    • Keypad includes digits, decimal point, scientific notation (E), and negative sign (-).
    • Clear and backspace functionality, with a "Copy" button for results.
  • Practical Applications: Useful in astronomy (e.g., calculating Earth’s orbital period around the Sun), space mission planning (e.g., satellite orbit design), and educational demonstrations of Kepler’s laws.
  • How to Use:
    • Select whether to calculate Orbital Period (\( T \)) or Semi-Major Axis (\( a \)).
    • Enter the mass of the central body (\( M \)) and select the unit (kg, g).
    • Enter the semi-major axis (\( a \)) (m, km, AU) or orbital period (\( T \)) (s, days, years), depending on the calculation type.
    • Enter the gravitational constant (\( G \)) in m³ kg⁻¹ s⁻² (default: 6.6743E-11).
    • Use the keypad to insert digits, decimal point, scientific notation (E), or negative sign (-).
    • Click "Calculate" to compute the result, then use "Copy" to copy it.
    • Use "Clear" to reset, or "⌫" to delete the last character.
    • Share or embed the calculator using the action buttons.
  • Helpful Tips:
    • Ensure mass, semi-major axis, and period are positive.
    • The gravitational constant can be positive (standard value) or negative (for theoretical scenarios).
    • Use scientific notation (E) for large/small values (e.g., 1.496E11 for 1 AU).
    • Final results are in SI units: period in seconds (s), semi-major axis in meters (m).
    • For circular orbits, the semi-major axis equals the orbital radius.
    • This calculator assumes the orbiting object’s mass is negligible compared to the central body.
  • Examples:
    • Example 1: Earth’s Orbital Period around the Sun:
      • Calculate: Orbital Period (\( T \))
      • Input: \( M = 1.989E30 \, \text{kg} \), \( a = 1 \, \text{AU} \), \( G = 6.6743E-11 \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)
      • Steps:
        • Convert: \( a = 1 \, \text{AU} = 1.496E11 \, \text{m} \)
        • Formula: \( T = \sqrt{\frac{4 \pi^2 a^3}{G M}} \)
        • Calculate: \( a^3 = (1.496E11)^3 \approx 3.347E33 \)
        • Calculate: \( G M = 6.6743E-11 \cdot 1.989E30 \approx 1.3271E20 \)
        • Calculate: \( \frac{4 \pi^2 a^3}{G M} = \frac{4 \cdot (3.14159)^2 \cdot 3.347E33}{1.3271E20} \approx 9.9518E12 \)
        • Period: \( T = \sqrt{9.9518E12} \approx 3.1568E7 \, \text{s} \)
      • Result: \( T \approx 3.1568E7 \, \text{s} \) (approximately 365.25 days or 1 year)
    • Example 2: Semi-Major Axis of a Geostationary Satellite:
      • Calculate: Semi-Major Axis (\( a \))
      • Input: \( M = 5.972E24 \, \text{kg} \), \( T = 1 \, \text{day} \), \( G = 6.6743E-11 \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)
      • Steps:
        • Convert: \( T = 1 \, \text{day} = 86400 \, \text{s} \)
        • Formula: \( a = \left( \frac{G M T^2}{4 \pi^2} \right)^{1/3} \)
        • Calculate: \( T^2 = (86400)^2 \approx 7.4656E9 \)
        • Calculate: \( G M = 6.6743E-11 \cdot 5.972E24 \approx 3.9857E14 \)
        • Calculate: \( G M T^2 = 3.9857E14 \cdot 7.4656E9 \approx 2.9755E24 \)
        • Calculate: \( \frac{G M T^2}{4 \pi^2} = \frac{2.9755E24}{4 \cdot (3.14159)^2} \approx 7.5424E22 \)
        • Semi-Major Axis: \( a = (7.5424E22)^{1/3} \approx 4.2168E7 \, \text{m} \)
      • Result: \( a \approx 4.2168E7 \, \text{m} \) (approximately 42,168 km)
    • Example 3: Custom Orbit around a Planet:
      • Calculate: Orbital Period (\( T \))
      • Input: \( M = 1E23 \, \text{kg} \), \( a = 1E7 \, \text{m} \), \( G = 6.6743E-11 \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)
      • Steps:
        • Calculate: \( a^3 = (1E7)^3 = 1E21 \)
        • Calculate: \( G M = 6.6743E-11 \cdot 1E23 \approx 6.6743E12 \)
        • Calculate: \( \frac{4 \pi^2 a^3}{G M} = \frac{4 \cdot (3.14159)^2 \cdot 1E21}{6.6743E12} \approx 5.9088E8 \)
        • Period: \( T = \sqrt{5.9088E8} \approx 2.4308E4 \, \text{s} \)
      • Result: \( T \approx 2.4308E4 \, \text{s} \) (approximately 6.75 hours)

Calculate orbital periods or semi-major axes for planets and satellites with detailed steps using this calculator. Share or embed it on your site!

Have Suggestions?

We value your feedback! Share your ideas to help us improve the Kepler’s Third Law Calculator.